AD-A260 067

ATION PAGE

Form Approved
OMB8 No. 0704-0188

VRGN

10 Washinglon Meadquarters Services, Directorate

averaqe 1 hout oer response, including the time for reviewng instructions, searching #risting data sources,
arding this burden estimate or anv other aspect of this
or information Qoerations and Reoorts, 1215 Jetferso
f Management and Budqget, Paperwork Reduction Project (0704-0 188), Washington, DC 20503,

2q the coliection of information  Send comments re

1. AGENCY USE ONLY (Leave blank}) !2. REPORT DATE

I March 1991 memorandum

3. REPORT TYPE AND DATES COVERED

{

4. TITLE AND SUBTITLE

Control Algorithms for Chaotic Systems

6. AUTHOR(S)

Elizabeth Bradley

5. FUNDING NUMBERS

N00O14-85-K-0124
N00O014-86-K-0180

7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS(ES)

Artificial Intelligence Laboratory
545 Techniology Square

Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1278

9. SPONSORING/MONITORING AGENCY NAM<(S) AND ADDRESS{ES)
Qffice of Naval Research
Information Systems

Arlington, Virginia 22217

10. 5PONSORING / MONITORING
AGENCY REPQRY NUMSER

None

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATIMENT

Distribution of this document is u g%_.

12b. DISTRIBUTION CODE

Wmmm
Distribation JaBobed

13. ABSTRACT ‘Maxunum 200 words)

This paper presents techniques that actively exploit chuotic behavior
to accomplish otherwise-impossible control tasks. The state space is
mapped by cumerical integration at different system parameter valces
and trajectory segments from several of these maps are automatically
combined into a path between the desired sysiem states. A fine-grained
search and high computational accuracy are required to locate appro-
priate trajectory segments, piece them togather and cause the system
to follow this composite path. The sensitivity of a chaotic system's
state-space tupclogy to the parameters of its equations and of its tra-
jectories to the initial conditions make this approach rewarding in spite

(continued on back)

4. SUBJECT TERMS

chaos

{key words)

nonlinear dvramics

20

15. NUMBER OF PAGES

control

16. PRICE (OOt
scientific computation

OF REPORY
UNCLASSIFIED

7. STCURITY CLASSIFICATION

19. SECURITY CLASSIFICATION
OF ASSTRACT

UNCLASSTFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

20. LIMITATION OF ABSTRACY

UNCLASSTFLED

NSN 75£0-01.280-5500

Standatd form 298 (Rev 2.89

Prayrpped Sy SR\ AC 11§18

by Bl




Block 13 continued:

of its computational demands. Boundaries of basins of attraction can
be breached, vastly altering both global and local convergence proper-
ties. Strange attractor bridges can be found that connect previously
unreachable points. Examples of both are shown. :

2 g,
T
AL X
N
B v
R TR
’J‘t- .
. N
- f. ¢
? e
. H »: brd H
”, ~ Ul ¢
Y .[ v .
&,“ ..
‘. - -

2 el NI Y e

L W PTLER LA L DR T

® vetn .o a1 - -

' GOOY

st RS



MASSACHUSE1'TS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Merno No. 1278 March 1991

Control Algorithms for Chaotic Systems

Elizabeth Bradley

Abstract

This paper presenis techniques that actively exploit chaotic behavior
to accomplish otherwise-impossible control tasks. The state space is
mapped by numerical integration at different system parameter values
and trajectory segments from several of these maps are automatically
combined into a path between the desired system states. A fine-grained
search and high romputational accuracy are required to locate appro-
prizce trajectory segments, piece them together and cause the system
to follow this composite path. The sensitivity of a chaotic system’s
state-space topology to the parameters of its equations and of its tra-
jectories to the initial conditions make this approach rewarding in spite
of its computational demands. Boundaries of basins of attraction can
be breached, vastly altering both global and local convergence proper-
ties. Ctrange attractor bridges can be found that connect previously
unreachable points. Examples of both are shown.

Copyright (© Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided
in part by the Advanced Research Projects Agenzy of the Department of Nefense under Office
of Naval Research contracts N00O14-85-K-0124 and N00014-86-K-0180.

This paper was presented in March 1991 at the First European Conferencc on Algebraic
Computing in Control and will appear in Lecture Notes in Coatrol and Information Sciences.

93-01610 o
IIEWME oy A

_




Control Algorithms for Chaotic Systems

Elizabeth Bradley
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

March 27, 1991

Abstract

This paper presents techniques that actively exploit chaotic be-
havior to accomplish otherwise-impossible control tasks. The
state space is mapped by numerical integration at different sys-
tem parameter values and trajectory segments from several of
these maps are automatically combined into a path between the
desired system states. A fine-grained search and high computa-
tional accuracy are required to locate appropriate trajectory seg-
ments, piece them together and cause the system to follow this
composite path. The sensitivity of a chaotic system's state-space
topology to the parameters of its equations and of its trajectories
to the initial conditions make this approach rewarding in spite
of its computational demands. Boundaries of basins of attraction
can be breached, vastly altering both global and local convergence
properties. Strange attractor bridges can be found that connect
previously unreachable points. Examples of both are shown. a?.??.;"""-—




1 Introduction

This paper presents control techniques that can be applied to chaotic systems.
The unique attributes of chaos are exploited by these algorithms in order to
perform control tasks that could not otherwise be accomplished. Programs
utilizing extensive simulation and global reasoning about state-space features
identify nonlinear trajectory segments that can be pieced together into a path
between the specified states. The driving concept behind this approach to
control of nonlinear and chaotic systems is to combine fast computers with
deep knowledge of nonlinear dynamics to improve performance in systems
whose performance is rich but whose analysis is mathematically and compu-
tationally demanding.

In a nonlinear system, the distancec between neighboring state-space tra-
jectories can grow exponentially with time, so small trajectory perturbations
can have serious global repercussions. The Voyagey missions used Jupiter as
a slingshot for just this reason: near the point of closest approach, a small
change in angle, via a short rocket burn, drastically changed the spacecraft’s
overall path in a fashion simply unobtainable in a linear system. Small errors
in that course correction can, however, have equally dramatic effects. This
leverage is the power of and, paradoxically, the difficulty with nonlinearity.

The system's state space is explored for different parameter values. Since
nonlinear systems are exquisitely sensitive to these parameters, a small range
of parameter vzriation can give the control algorithm a large range of behav-
iors to exploit. Taking advantage of this range .ud understanding these
behaviors, the automatic path-finding algorithm selects a set of trajectory
scgments from the mapz and combines them to form a path through the
state space between the desired system states. The controller causes the
system to follow this path by monitoring the system state and switching pa-
rameter values when the segment junctions are reached. Striking results are
achieved with this technique: a very small control action, delivered precisely
at the right time and place, can accurately direct the system to a distant
point on the state space. In one of the examples in this paper, a small con-
trol action briefly pushes a system in a counterintuitive direction in order
to reach a path that travels dicectly to the goal state. In another example,
an equally small change is used to rove a particular state from the basin of
attraction of one fixed point to the basin of another.

These techniques can be applied to any system — linear or nenlinear
— but chaotic systems have several properties that make them particularly
usefu! from a control standpoint. Trajectories in such systems cover a subset
of the state space densely, visiting arbitrarily small neighborhoods of every
point in tiat subset. This denseness has obvious implications for reachability:




chaotic attractors can be used as bridges between otherwise-unconnected
points. Furthermore, such attractors contain an infinite number of unstable
periodic orbits that can be located and stabilized.

The rest of this paper is organized as follows. Section 2 briefly reviews
pertinent aspects of nonlinear dynamics theory. Section 3 outlines the con-
trol algorithms that are used here to find and follow paths through state
space. Section 4 illustrates the algorithm with several numerical examples
and section 5 summarizes the work, its implications and its connections to
previous research.

2 Theory
The equations for an n-dimensional nonlinear system can be written
dz -
d—t=F(x,k1,...,1c,,,t) (1)

where 7 is an n-vector whose elements are the system’s state variables and
F is a nonlinear function of the state Z and the parameters k;. Necessary
conditions for chaos are, in addition to the nonlinearit» of F, that n > 3
and F(Z,ky,...,k,,t) be non-integrable(9]. The state-space trajectories of a
dissipative chaotic system! separate exponentially over time and yet remain
on a bounded fractal subset of the state space, called a chaotic or strange
attractor[13], within which are embedded an infinite number of unstable peri-
odic orbits. The distance between nearby trajectories grows as O(e*!), where
A is the largest positive Lyapunov exponent[6] of the system. On a sur-
face of section through the attractor, the unstable periodic orbits appear as
fixed points at the intersections of the stable and unstable manifolds of the
systemn (1) above.

The direction and magnitude of the vector fie' { described by the system
(1) depend strongly on the equations parametei.. .-.caly, this sensitivity
can be defined as
AF(£. k.. kpt) @)

ok

Changes in parameter values (Ak;) also affect the large-scale features of
the state-space plot, causing fixed points to split and give birth to other

V*.'(f,k;,...,ky,t) -

‘Hamiltonian or non-dissipative systems do not have sttractots, as their equations
preserve state-space volumes.




fixed points, limit cycles or chaotic attractors. These topological changes
are known as bifurcations. Between bifurcations, the Ak; can also cause
dramatic changes in the position, shape and size of existing attractors.

Both small- and large-scale changes can be exploited by control algorithms
if the responsible parameters are accessible. For example, V;, can be used to
identify regions of state and parameter space where small Ak; have locally
large effects. Changes in attractor size or position can make a target state
reachable from different areas of state space. Slow, roundabout paths and
fast, direct paths between two poiats are often separated only by a small
parameter difference.

If a stable fixed point can be found near the target state for some parame-
ter value, the control problem is more or less solved, provided that the initial
state is in its basin of attraction. However, while the stable fixed points of
a chaotic system do move about the state space as the parameters are var-
ied, they might only wander over a small region before bifurcating into more
complex attractors. In general, it is unlikely that any choice of parameter
value would place a fixed point near the target state, unless the path of the
fixed point were fortuitous. Moreover, convergence to such points is often
slow.

If no suitable fixed points exist, stabilization of the system state at a
particular point is, in the classic sense, impossible. An alternative control
objective is a steady-state orbit that returns to the target point every m
cycles. The unstable periodic orbits embedded within a chaotic attractor
can be located using the method of Gunaratne et al{8]. Points on a section
that return to their own small neighborhoods after m piercings are assumed
to be very close to m-cycles; averages of tight bunches of such points are
taken to be good approximations to unstable fixed points.

These unstable pertodic orbits can be stabilized using the control scheme
developed by Ott et al[i3], wherein the system’s dependence upon the pa-
tameter is linearized about the fixed point on the n — 1-dimensional surface
of section. This works where the linearization is a good approximation: in
the n — l-dimensional “control parallelogram” around the point, whose size
is determined by the control parameter’s range, its effects on the orbit and
the orbit’s unperturbed stability properties. A small change in k causes a
k = ko periodic orbit to return, after m cycles, not to its original coordinates
Po. but to some nearby point P. The vector §, measures this effect:

. _ OF 1 =
G = grhe ~ o (P-P) (3)




The stability properties are determined by integrating the variations

ds; _Of
dt —;ax,,&"

around the orbit. f7 is the j** component of the system equations (1) and
the 8;; are variations around 730. The unstable eigenvector €, and eigenvalue
A, of this matrix, together with the admissible variation of the parameter &*
around k% and the vecto: §i, determine P,,, the size of the control parallelo-
gram, according to

P = k|(1= 2713k - & (4)
Details about the derivation of these formulae are given in [13].

Since the control parallelogram surrounds a point that is embedded within
a chaotic attractor, all trajectories will eventually enter the controller’s do-
main, be driven to the orbit, and, in the absence of noise, remain there
indefinitely. The denseness of these orbits makes this technique very prac-
tical if a chaotic attractor overlapping the target state exists; nevertheless,
target acquisition is a problem. The delay before any particular trajectory
wanders into the parallelogram is unpredictable, although it does depend
stochastically on the ratio of the areas of the parallelogram and of the entire
attractor.

3 The Control Algorithm

The following aigorithm can be used to find a path between two state-space
poiats A 2ad B to within a tolerance 7. The system is stabilized either
at the target state or upon a nearby periodic orbit. Some restrictions on
B do apply; these are discussed at the end of the section. This algorithm
applies to linear, nonlinear and chaotic systems, but only with the latter
can it exploit the dense unstable periodic orbits that are embedded within
chaotic attractors. For expositional clarity. this presentation assumes that
the system has a single parameter k; more parameters would simply increase
the size of the search space and the number of indices needed to keep track
of it

1. Map the state space for different parameter values:

e Pick an initial range (Ak) and interval [kiov, kaiza) for &.
o Construct state-space portraits at each ki, + ndk for (ki +
nAk) € [kiow, kayga), using A as one of the initial conditions.

3




o Construct portraits with a smaller Ak in ranges where successive
plots exhibit large differences (e.g., large V4, stable fixed points
near B, bifurcations or changes in areas of chaotic zones.)

2. Establish the goal st:te:

¢ Examine the collection of state-space maps and locate a stable
fixed point that lies within 7 of B.

o Failing that, identify parameter values that create chaotic attrac-
tors overlapping B. Choose a surface of section § through B.
Locate an unstable periodic orbit within 7 of B. Determine the
size Py of the parallelogram of control around the point where
that orbit pierces §.

3. Choose an initial grid size € and find the best (e.g., fastest, shortest
euclidean distance) path between the grid squares containing A and
B. This segment can be a portion of any trajectory on anv of the state-
space maps constructed in step 1. It is designated S°, starts at Sp,,
and ends at 57, ., with k = ko.

4. Reduce ¢ and find the best path between the grid squares containing B
and §9,.,,- Iterate on successively smaller scales until € < Po. Record
the k; value and the starting and ending states S},;, and Sj;,,; of each
segment.

<

. Similarly, find the best path between Sp and A. The final ¢ depends not
on Pg but on the largest positive Lyapunov exponent of the attractor
of which S is a segment.

The system state can be caused to evolve along a trajeciory consisting
of a series of path segments {S8%...,5'} via the following set of control
actions. Because of the recursive, longest-first nature of the path-finding
algorithm, the segments are not followed in the order in which they are
found, so the list must first be sorted into the proper order {S%,...,5%}.
Beginning at A, the parameter is set to ky to initiate the first segment S® and
the state is monitored until £ = S7,,;. The parameter is then changed to &},
rerouting the system onto S”. Clearly, it is vital that parameter switches take
place much faster than the system'’s time scales. This procedure is repeated
through all segments in the path. After the final switch, k is set to the value,
determined in step 2, that creates the desired fixed point or unstable periedic
orbit; in the case of the latter, the linearized control scheme of {13] is then
activated.

G




This algorithm finds globally good paths that have locally bad segments
(e.g., driving east to an airport to catch a westward flight) — the sort of path
that purely-local control schemes miss. Even paths between regions of state
space that are apparently not connected can be found; the control parameters
add dimensions to the space that can open conduits between those regions.
The examples presented in the next section illustrate both of these cases.

This particular version of the path-finding algorithm, simplified for pre-
sentation, does not apply to nonautonomous systems, problems where the
final state is unspecified, or problems that require a specific path to be fol-
lowed. However, adapting the algorithm tc fit these cases requires only simple
modifications. Time dependence simply adds a dimension to the problem.
Where the state can acceptably settle anywhere in a given range, control
problems could be solved with a broadened fixed-point search in step 2.
Matching a specified path would require 2 different criterion for path choice
in step 3 — not the fastest or most direct seginent, but the best match to a
specified path.

Several caveats accompany thi$ method:

e B may not fail near an unstable pericdic orlit or a fixed point for
any value of k, in which case the algorithm wil' faii. The non-zero
fractal dimension of a chaotic attractor and the denseness with which
trajectories cover it make the furmer less likely.

o This method applies to systems of any dimension, but the periodic
orbit stabilization method of [13] requires that there be at least as
many accessible parameters as there are unstable eigenvalues of the
orbit.

o I{ state variables are not directly accessible, information about the sys-
tem state must be synthesized from outputs and other accessible sig-
nals. Systems in which this is not possible canuot be controlled using
this approach.

e Slight timing or parameter value errors (e.g.. quantization error) can
be magnified exponentially, particularly if they occur at the beginning
of a long segmant or in an area of large ?%‘?‘ The property elucidated
in the Beta Shadowing Lemma? keeps these errors from being truly
disastrous. but they still place a fundamental upper bound on realizable
path length.

IBecause *with high probability, the sample paths of the problem with external noise
follow sornite orbit of the deterministic system closely™{7] and the deternuanistic orbit lives
ot a bounded attractor. ’




Constructing and examining state-space portraits is time-consuming. This
motivates the attempt in step 1 of the algorithm to restrict attention to the
useful ones — new maps only being considered useful it their portraits differ
from the existing ones, regardless of the k-interval between plots. The region
of state-space considered is also restricted: it must be somewhat larger than
the bounding box of A and B in order to allow for locally counterintuitive
moves. The size of this region is determined heuristically and can be varied
if the algorithm fails to find a path on its first pass. There are many obvious
points in this pr~cedure where computation can be traded for accuracy: a
smaller Ak and . larger range [Kiow, kaiga), location and study of different
unstable periodic points to find the one that is closest to the target state
or whose control parallelogram is largest, variational analysis around each
segment to check whether, for example, the k& = 49.9 path is better than the
k = 50 path, etc.

Preliminary versions of these path-finding and control algorithms have
been implemented and tested. The programs are written in the Lisp dialect
Scheme(14] and run on an HP series-300 workstation. State-space portraits
are computed from a given set of system equations using a fourth-order
Runge-Kutta adzptive time-step integrator. Trajectories are indexed on a
state-space grid and represented as lists of the grid squares that they en-
ter. The grid size ¢ is manipulated as part of the search in step J of the
path-finding algorithm.

The next section of this paper illustrates these techniques with several
numerical examples.

4 An Example

The Lorenz equatioas{l1] are:

% a(y - 2) }
F(%,6,rb) = % =|rz-y-az (9)
i-f 2y — bz

These well-known equations approximately describe convection in a sheet of
fluid heated from below. The state variable z is proportional to convection
intensity; y and 2 quantify temperature variations. a and r are physical
parameters of the fluid — the Prandt] and Ra’ ieigh numbers — and b is an
aspect ratio. Numerical integration of these equations from an initial staie
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-48. - 3215 r e 350 4 (0, 1.2

Figure 1: Lorenz Attractor fora = 16,r =45and b =4

Zy = (o, Yo, z0) yields a time-parametrized trajectory Z(t) in state space.
F is dissipative and nonlinear. It is also non-integrable for some parameter
values; for these values, its trajectories converge to a chaotic attractor. A
particular case of this, shown in figure 1, occurs for ¢ = 16, r = 45 and
b =4. Asthis figure is an z — z projection of a three-dimensional object, the
apparent trajectory crossings do not represent uniqueness violations. The
parameter values and the initial state are shown at the bottom of the figure.
The values in the upper right and lower lef: corners are normalized axis
coordinates. An z — z section® of the same attractor at y = —13 is shown in
figure 2. More details about the structure and properties of Lorenz attractors
may be found in {19].

Consider the task of navigating between the two points marked by crosses
in figure 3, starting at the rightmost (A) and ending at the leftmost (B.)
On the axes of the figure, the coordinates (z, y, 2) of these points are (8,
29, 64) and (-24.5, -20, 68). r is used as the control parameter and a and &
are fixed. We make no assertions about whether changing this parameter is
cither physical or practical; this is purely a matbematical example.

As set out in step | of the algorithm in sectiou J, the state space is
mapped with an initial r-step of five and an r-range cf {20,60]. Portraits are

3Points appear on this section where the trajectory picrces the y = ~15 plane with a
positive velocity.

YLotens hiinself exploted the parameter space outside the range (r = 1) within which
the equations are considered to be an accurate physical model.
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-45.-5 a=16r =45 b = 4: 10.1.2}

Figure 2: x-z Section of Lorenz Attractor for a = 16, r =45 and b =4
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v a5, -8 3 =16, 243 bed(0,1.2)

Figure 3: Origin aud Destinavion Points

10




.....

-7
e

45. -5

Figure 4: Two Stable Fixed Points

also constr' - © > : a a finer grain (Ar = 1) near, for example, the bifurcation
at r = 24 that creates a chaotic attractor and in the range where that
attractor expands to cover B.

Proceeding to the first part of step 2, the maps are examined for stable
fixed points of the system (5) at or near B. The Lorenz attractor collapses
to a pair of stable fixed points at low r, as demonstrated by the » = 20
trajectories in figures 4(a) and 4(b). Note that the two starting points are in
different basins of attraction. Both of the fixed points — whose coordinates
are (8.72, 8.72, 19.00) and (-8.72, -8.72, 19.00)®* — move as r is varied, but
neither approaches B for cny value of r.

Since no appropriate fixed points exist, the second part of step 2 indicates
that the maps should be examined for nearby chaotic attractors and unstable
periodic orbits. Figure 5 shows a trajectory for r = 30, just above the
bifurcation that changes the fixed points of figure 4 into a chaotic attractor.
Neither A nor B happens to iie upon this particular attractor, so it cannot
be used as a bridge between them or as a source of nearby unstable periodic
orbits. As r is raised further, however. the attractor expands; one of its
lobes overlaps B when r = 42 (figure 6). For r = 50, an unstable seven-
cvcle is found on the y = =20 z — = surface of section at P! = (-24.673,
68.207). This orbit is found by computing 3000 piercings of the y = —-20
plane, identi{ying, sorting into bunches and averaging those that return after
m cycles, and then choosing the one closest to B. We assume, for the purposes

$The symmetry is not coincidence; see {19] for details.
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Figure 7: Lorenz Attractor for a = 16, r = 50 and b =4

of this probl~m, that errors smaller than 1% of the total signal amplitude
vz +y* § 27 are admissit ‘e, so P7 meets vhe specifications. The eigenvalues
of the variationa! system integratea around the seven-cycle are A, = 0.734
and A, = —502.077, with the associated eigenvectors &, = 0.834F + 0.5522
and &, = 0.635% +0.728%. A 1/2% change in r causes the point P7 to return
Dot to itaelf (-24.673, 68.207), but to P7 =(-23.929, 66.498), so

- 6737 ~ 1 ~7 ~7 - - -

gr = "'(,;"':50 e -A—r('P -P ) =170.8% - 179.92

The allowed range of vanation of r, for a .% control tolerance, is 0 0075.
Using these values in equation (4), we abtain P., = 0.096 to complete step
2.

Usiag an initial choice of « = 20, the collection of portruits is examined,
as described in step 3, for paths hetween the grid squares containing A and
B. Th~ r = 50 portrait of figure 7(a) ~o: tains one such segment, hereafter
designated 5°. An edited version of this portrait, plotted on a smaller region
around the two points and showing only the useful part of the trajectory,
18 shown in figure 7(b,. S5¢ pierces the y = —20 olane at (-24.51, -19.90,
68.05), which is actually within the control parallelogram, so no addi*ional
path segments need be found to connect $° and B,

To find trajectory segments that conaect point A to Jhe other end of S°,
step 4 is iterated in the region outlined by th~ square in figure 7(b). The
naturs of the piojection makes the distauces deceptive; A is actually quite
far above the nearest threads of the r = 50 attractor. The segment S', found

13




(8, 29, 64)
(-24.5, -20, 68) A (8.82, -4.37, 57.44)

B 32
=1 f/
(8.10, 29.3, 63.7) o =}' 53 3=

(8.8230, -4.3716, 57.2139)

8

Figure 8: Schematized Segmented Path

on the r = 40 map with ¢ = 1, spans most of the distance from A to S°. One
more iteration is required on a yet-finer scale (¢ = 0.0001) to find the two very
short segments S? and $3, at r = 10 and r = 8, needed to connect S' to A
and to §°. Since S° actually enters the control parallelogram sround B, this
process of connecting to it amnounts to a solution to the “target acquisition
problem” of (13].

A schematized version of the overall path {$?, S!, §3, 5%} is shown in fig-
ure 8. It is composed of the four segments discussed in the previous two
paragraphs. The two longer segments are segments of chaotic attractors;
the two shorter ones, enlarged so as to be visible, are sections of transient
trajectories ultimately destined for one of the system’s fixed points. The for-
mer are examples of a “strange attractor bridge”, connecting two otherwise-
unconnected points. The values for the r; and the S},,,, are shown next to
the segments and the transition points where they meet. The actual numer-
ical integration of the path from A to B along {5°,S?, $4,5°} is shown in
figure 9. On this scale, the smaller connecting segments are invisible. Note
that S' actually moves the system state directly sway from B. This locally

14
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Figure 9: Numerical Integration of Segmented Path

counterintuitive move is made in order to reach a globally good path.

The control program causes the system to follow this segmented path
by monitoring the system state and switching the parameter accordingly.
The transition that initiates S° is the most critical of the three, as nonlin-
ear expansion along its great length can severely magnify any error; this is
where the four decimal place accuracy becomes important. The path length
between A and B is 130.1 normalized distance units, requiring 0.3567 nor-
malized time units to traverse. The contrast to the case without active target
acquisition (see [13]) is striking: if a trajectory is started at A and simply
allowed to evolve with r = 50, it enters the control parallelogram around B
after traveling 25223 normalized distance units around the attractor in 104
normalized time units. See figure 10.

If B were near one of the system’s low-r fixed points, the first part of
step 2 would succeed. Though a single segment might then converge to the
desired state, use of a segmented path can alter macroscopic quantities like
convergence speed and reachability. For example, a trajectory starting from
the point (22.4, 30.5, 60) at the value r = 25 would normally converge to
the left hand fixed point (-9.80, -9.80, 24.00) along the tightly-wound spiral
at the bottom left of figure 11. The right-hand path in the figure was found
by a single pass of the first two steps of the algorithm with ¢ = 5. This path
contains two scgments: an r = 60 trajectory that travels most of the way
from (22.4, 30.5, 60) to the other fixed point, which lies at (10.25, 10.31,
26.77), and a short section of the r = 25 spiral that surrounds the second
fixed point. Not only has this manipulation allowed the trajectory to jump
the basin boundary and converge to the opposite fixed point, but it has also
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Figure 10: Without Target Acquisition

=43, -3

Figure 11: Segmented Path to a Fixed Point
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bypassed much of the slowly-converging spiral around that point.

5 Conclusion

The state-space features of chaotic systems are ::-ungly affected by param-
eter values. Moreover, the trajectories that make up those features separate
exponentially over time. Small changes in parameters or state can thus have
large and rapid effects; this leverage is a powerful tool for control algorithms.
In this paper, we have indicated how fast and accurate computation can be
used to synthesize paths through a chaotic system’s state space that exploit
this leverage to accomplish otherwise-unattainable control tasks. Nonlinear
dynamics provides the mathematical tools used to choose values, tolerances,
heuristics and limits for the algorithms that select and piece together trajec-
tory segments to create these paths. The Lorenz system is only one of the
many systems to which these techniques can be applied. Other examples,
with perhaps more practical benefits, are phase-locked loops[4], robot manip-
ulators and spacecraft controllers[18], and single and double pendulums(5].
This brief list is far from complete.

The algorithm is not yet fully automated; for example, the determina-
tion of when an attractor “covers” a point was made by eye. Algorithms
that produce qualitative descriptions of state space, like the Bifurcation
Interpreter{1], KAM[20] or PLR{16] will be involved in the ultimate mecha-
nization of this. Mathematical models are currently used to construct state-
space portraits; errors in these models can cause spectacularly bad control
decisions. Experimentally exploring and mapping the state space of a physi-
cal system [10] would probably be much faster and would also obviate mod-
eling error. Although these techniques have, to date, only been applied to
simulated devices, the ultimate aim of this project is to control actual phys-
ical systems. Instrumented versions of several chaotic systems — a double
pendulum, a driven single pendulum, and several phase-locked loops — have
been builv. The I/O channel that transmits the state information and con-
trol parameter values between controller and system is under construction.
These tools will be used to obtain experimental verification of the results
presented in this paper.

In the most general terms, the implications of this work are that:

o A broader view and understanding of chaotic state-space features and
the effects of parameters upon them is a powerful tool, but its applica-
tion requires great computational effort.
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¢ Understood and controlled, chaotic behavior can be profitably used to
improve a system’s design and performance,

This approach can be thought of as a new flavor of adaptive control —
one that takes a global viewpoint and eschews almost all linearization®. It
extends the active use of chaos in control, which presently consists of (1)
using knowledge of chaotic zones’ boundaries to site an operating point in
the middle of the widest part of a system'’s largest stable zone to maximize
noise immunity[17] and (2) the recent work on unstable periodic orbits [13]
discussed at various points in this paper. The main difference between this
work and [13] lies in the breadth of the aims: we wish, rather than to stabilize
a system on a particular type of orbit, to navigate dynamically through all of
state space with minimal restrictions. This project also extends the ongoing
program of research in our group[3] with the overall goal of investigating the
use of combined numerical and symbolic methods in scientific and engineering
computing.

The complexity of the tasks that are executed by this control program
and the accuracy with which it must perform make computation speed a vital
issue. The program must compute, store, search through and recognize fea-
tures in a large number of intricate state-space portraits whose topologies are
extremely sensitive to parameter variations. At the same time, many com-
putational approximations are out of bounds because the small errors that
they introduce can be amplified exponentially. Physical constraints require
that control actions take place about an order of magnitude faster than the
actions of the system itself, which further exacerbates the demands on the
program’s speed. All of this work is worth it: allowing a system to operate
in its chaotic regimes opens up new possibilities for better designs. Faster
computers{?] or special-purpose hardware might be part of the ultimate so-
lution, together with the understanding and algorithms gained in the course
of this research, to attaining novel and effective control of useful systems via
knowledge of nonlinear theory and intensive computation.

Somne authors in the adaptive control literature have hinted in the direction of control-
ling chaos, but they fall shott of active pursuit of the idea. admitting only that “chaotic
parameter estimates are not necessarily « bad thing to have™[12].
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